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The Earth-Moon System. 1.

Lecture 1: _The Physical Setting of Geodesy.

The study of the figure of the earth has 1its histori-
cal roots in studies made by geodesists. These studies
came from two sources:  One was the detached scientifiec
desire to know more about the figure of the earth which
moved the Erathosthenes and Snell; the other was the
practical urge to produce adequate maps which moved the
Cassinis and Digges. The scientific motivation for the
study of the earth 1s relatively easy to understand, but
I should 1like to take your time to point out some of the
practical reasons which have powerfully reinforced
scientific motivations.

The practical surveyor is attempting to construct
a map which will serve the ordinary purposes of daily
1ife. For some of them, such as hiking or automobile
travel, an accuracy of 1 percent is more than sufficient.
For others, including the problem of artillery firing, the
laying out of pipe lines, the emplacement of micro-wave
antennae and the putting in of telephone lines an accuracy
of a tenth of 1 percent would be desirable so far as the
paper stability permits it. These accuracies would not
by themselves justify the precision which 1s lavished on
first order triangulation. It might appear possible to
make relatively crude surveys and patch them together:
In practice, however, it is found that this policy is
extremely expensive and that it is far more satisfactory
to have an underpinning of precise survey. What happens
when you have a set of 1naccurate maps is that 1in the
compilation room the conflicts between the maps appear.
For exémple, suppose that the mapévare in error by 1
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percent; then along the junction between two individual
sheets you may have an error of a few tenths of an inch,
which might be tolerable; but when you have joined together
20 or 30 such maps to form a loop or an area, then you

find that there are discrepancies of many times this

amount where the loops close. Since the mapping of even

so small an area as France involves several hundred map
sheets, this procedure is evidently very unsatisfactory.

Theoretically again one could go into the compilation
room and say to the other compilers that they should
distort their sheets in such a way as to produce a uni-
fied whole and that you don't care how they do it. If
this 1s resorted to, then enormous waste and delays will
ensue. The compilers will want to work on the area a
little at a time. Left to themselves they will crowd
all the errors into one area where they become intolerable,
or they will start in two different areas and when these
two areas join an intolerable dilscrepancy will be found.
In the meantime endless discussions will rage among the
compilers as to how this problem is to be met. Since the
compilers are very numerous compared to the first order
triangulators, the net loss is very large indeed.

Just prior to the German invasion of France in 1940
there was a confgrence apong the allies about the problem
of the adjustment of the Dutch, Belgian and German map
and survey data to agreement with the French. The plan
called for the recalculation of the Belgian and Dutch
triangulation starting from French triangles. German tri-
angulation was adjuéfed by applying blanket corrections
.to the latitudes and longitudes. Since these corrections
left a discrepancy on the order of 11 meters between cer-
tain points of Holland and Germany, a gréph was prepared.
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This graph was intended to adjust not the map data but only
the lists of surveyed points which were supplied to the
artillery.for their purposes.

When it 1s a matter of adjusting the triangulation
between several countries, it is an enormous advantage if
there exists a framework so precise that each of the several
countries involved will accept it as superior to its own.

The reason is that when a staff conference 1is held, each of
the military officers in the conference is representing a
group of civilian employees whom he cannot easily consult.

A few of them may be sitting back of the conference table at
his elbow, but the great majority are necessarily left at
home. He cannot easily make concessions. The question of
national pride 1s deeply involved. To adopt the proposal

of another country when it 1s obviously unscientifically con-
structed and to distort one's native maps and surveys to fit
it is felt as humiliating and is resisted. If, on the other
hand, the proposal for survey unification is scientifically
drawn and will represent an overall improvement in the survey
situation even in the separate countries, then acceptance

is much more readily secured.

Thus we see that precision in survey 1is a tool of
the high command.

In securing survey precision one obstacle 1s more serious
than any other and sets a limit to the precision that is i
reached. This obstacle is theAcrookedness of the path of light
through the atmosphere. Let us remember that at the moment when
we see the sun's lower limb touch the horizon, the whole of
the sun would be below the horizon 1f there were no atmosphere.
That 1s to say the refraction amounts to one-half a degree on
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long rays through the atmosphere. If we compare the cur-
vature of some 1800 seconds of arc with the desired
angular precision which is less than a single second of
arc, we see the magnitude of the problem which the geo-
desists must face.

Using everything except the graph, the U.S. Army
Map Service prepared a series of maps of Holland. The
maps were compared with the coordinate lists. Since the
Dutch maps were on the stereographic projection, there was
felt to be some uncertainty about putting them into the
framework of the Lambert projection used by the French.
These worries became acute when it was discovered that
the original Dutch stereographic coordinates could not
be converted to satisfactory agreement with the British
coordinate 1ists by the aid of information available to
the U.S. In the meantime the invasion of France by the
Germans resulted in the loss of important'portions of the
records. For several months, efforts continued at the
Army Map Service and in the Corps of'Engineers to discover
some mathematical discrepancy which would explain the
difference between the American coordinates lists and the
British lists. During this time the printing of the maps
was delayed. The discrepancy was finaliy explained when
the British produced the graph, but the dislocation of
the map production program had serious effects on the later
conduct of the war. Had there been an orderly and well
understood program, this delay would not have occurred.

It turns out that the only way of adjusting a whole
series of maps to agreement with one another is to provide
a precise framework for the area as a whole and to pin
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each map to that framework. Of course the framework it-
self must suffer arbitrary adjustments which are dis-
guised as least-squares solutions, but the magnitude of
the discrepancies which are tolerated here can be kept
below the level which is detected by the compillers. As
a result the inevitable squabbling about how those dis-
crepancies are to be adjusted can be confined to a rela-
tively small number of people. Here the sternest prac-
ticality indicates the need for precise survey data.

It is characteristic of geodesy that the method by
which this problem is attacked is the use of ‘the gravi-
tational field of the earth. In the determination of }
height above sea level, in the determination of position
on sea level, and in the exploration of the sea level {
surface itself, the geodesist takes advantage of the gra- |
vitational field of the earth to correct the errors
arising from atmospheric refraction.

The first example is the measurement of helght.
When 1t is impossible to avoid it, vertical angles are
sometimes measured between points whose relative elevation
is to be found. The inevitable effects of the curvature
of the ray are minimized so far as posslible by measuring
reciprocally over the line; that is, measuring the angular
elevation of B as seen from A and the elevation of A
as seen from B simultaneously. It turns out that this
procedure eliminates the effect of the mean curvatgfe
over the line. It does not, however, eliminate higher
order difficulties, and the angular accuracy which-is
attainable is on the order of one ten;thousandth or one
twenty-thousandth of'the distance. Here it wlll be noted
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that by referring the angles to the zenith at both ends
of the line, some use was made of the earth's gravitational
field.

A far more effective use arises when the line is cut
up into a large number of small pieces and the relative
elevations are determined section-by-section. The best
instrument for this purpose is the spirit level. In
practice, the surveyor puts the spirit level at the cen-
ter of the small section which he is measuring, he sets
the optical axis level and points first at the rod ahead
and then at the rod in back or vice versa. Through his
telescope he can read the height of the mark on the rod
to which his telescope is pointing. The difference of
the two rod readings 1s a very good approximation to the
difference between the heights of the feet of the rods.
The curvature of the ray is much less troublesome on a
short section since its effects increase with the square
of the distance. Thus a section one kilometer long cut
into 100 meter bits will have only one-tenth the total
amount of curvature that the whole kilometer piece would
have had. Moreover, by measuring both forward and back-
ward from the middle of the line, the surveyor 1s able to
make the effects of curvature cancel on each separate
line. The ray curves downward from the instrument toward
the mark by the same amount in both cases. By this method
of spirit leveling it 1s possible, for example; to deter-
mine the heights of points in the center of the United
States with an accuracy of a few tenths of a meter referred
to tide gauges on the coast. At a distance of a few
thousand kilometers these tenths of a meter subtend angles
of only a small fraction of a second of arc. We see
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that the curvature of the ray has in a certain sense been
straightened out by continual reference to the direction
of the vertical.

In measurements of horizontal position, again we find
that the properties of the gravitational field are used.
It turns out that the ray of light is curved in a direc-
tion perpendicular to the §tratification of the atmosphere.
This stratification 1is in nearly horizontal layers. If,
therefore, the geodesist measures angles in the horizon-
tal plane his angles will be nearly free of the effects
of refraction. It turns out that on a day when vertical
angles are. distorted by many minutes of -arc, the horizon-
tal angles as measured will be accurate within a fraction
of a second of arc.

Since the days of Pierre Bouguer, in the middle
of the 18th century, it has been customary to
represent the results of such angle measurements as these
by supposing them to have been measured on an imaginary
prolongation of the sea level surveys under the land.
This prolongation is called the geoid. In order to bring
the measured lengths into the same intellectual frame-
work, it has been customary since the time of Bouguer to
reduce the lengths to the yalues which they would have
had if measured at sea level between the points vertically
below the actual ends of the measured pieces. Thus the
net result of an extensive triangulation measurement is
the fixing of angles and lengths as if they had been measured
on the geoid. They are accompanied at the same time by
spirit levéling measurements which give helghts above the
geoid.
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In all of the above the question of the exact form
of the geoid 1is systematically ignored. For local sur-
veys 1t is possible to get by with the assumption that
the earth is flat. No significant distortions of hori-
zontal angles'will appear unless the triangle approaches
an area of 100 square kilometers. For more extensive
surveying up to the size of a state of the U.S., it 1is
often possible to get by with the assumption that the
earth is a sphere. Even in national surveys 1t is possible
to make a precise computation assuming that the earth is
an ellipsold of revolution, but not troubling to get the
exact parameters of the ellipsoid. Theée methods are
perfectly adequate as long as the measurements are only
those of horizontal angles or lengths along the surface,
and as long as the results which are desired from the
measurements are of thé same kind. In particular, the
- heights which are wanted for the construction of dams or
the laying of pipes or other hydraulic problems are of
just this kind. The notion of the true form of the geold
is merely parasitic in most ordinary engineering appli-
cations of geodesy.

The mathematicians have been confronted with a
situation which they thoroughly enjoy. The problem is to
divise coordinate systems and methods of thought in which
it will be possible to move about over the surface of
the earth in the spirit of a two dimensional being who
does not know that there 1s such a thing as up and down.
The problem is one of great mathematical interest. Some
of the most beautiful of the papers of Gauss concerned
themselves with this problem, and the modern theory of
relativity inherits its.point of view and many of its
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mathematical techniques from Gauss, his pupil, Riemann,
and hls successors, the founders of tensor analysis.

The geophysicists never really liked this situation
and were constantly endeavoring to find out something
about the form of the geoid. They got very little support
from the practical people until the modern age of the
intercontinental ballistic missiles, the earth satellite
and the space probe. For each of these, what 1s needed
is the true x, y, z coordinate of the tracking station
referred to the center of the earth. To convert the
measurements made on the geoid to measurements referred
to the center requires a knowledgé of the shape of the
geold, and it is with this we will concern ourselves next.

The first approximation to the form of the geold
which is in practical use today 1s the assumption that it
i1s an ellipsold of revolution with a semi-major axis a,
and a semi-minor axis b. Instead of giving b, it 1is
more customary to give the quantity 222 which 1s called
f for flattening. The measurement of these two quan-
titles was originally made by determining the radius of
curvature at various latitudes. The first determination
was made in the 18th century by the expedients of the
French academy to Peru and Lapland. The method has
remained in vogue with improvements right up to the work
of Chovitz and Fischer on the Hough's spheroid in 1956.
In recent times, however, there has been a tendency to
rely on measurements of gravity for the determination of
the flattening. There has also been a tendency to obtain
the flattening from the relatlonship between the constant
of precession and the hydrostatic theory. It turns ouf,
in fact, that measurements‘of the radius of curvature
do not give particularly reliable measures of both Quan-
titles a and f. Instead, they glve a relation between
the two.
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Once an ellipsoid has been assumed, the geodesists con-
cern themselves with the deviations between the actual shape
of the geoid and that of the assumed ellipsoid. Several
methods of measuring these undulations of the geoid are in use.

In the first place, it 1s possible to make astronomic
measurements of latitude and longitude along a triangulated
arc. Each measurement of latitude and longitude amounts to
a determination of the direction of the vertical at that
point. When this 1s compared with the calculated direction
of the vertical, the so called geodetic latitude and longi-
tude, the differences which appear are called the deflec-
tion of the vertical or perhaps the deflection of the
plumb, depending on whether we think of ourselves as looking
upward or downward along the vertical. Each deflection of
the vertical can be thought of as gilving the slope of the
geoid with respect to the ellipsoid at a particular point.
If we combine these deflections, we can build up a picture of
the height of the geoild above the ellipsoid in much the same
way as a plcture is bullt up of the form of the topography by
clinometric measurements, l.e., measurements of the slope.
The process 1s called astronomical leveiing, and it is
found that with a reasonable distribution of the astro-
nomical stations, a precision of the order of a few meters
can be reached. The weakness of this method lies in the
fact that only relative helghts are determined. An initial
height above the ellipsoild must be quite arbitrarily
assumed. Hayford arbitrarily assumed a height of +10
meters at Calais, Mainé. It was also necessary to make
a more or less arbitrary assumption about the place at
which the slope of the geold matches that of the ellip-
soid. For the Unlted States, the average slope of the
geold matches that of the ellipsoild very closely; for
France the two are made equal for five astronomic stations
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near Paris; for England they are equated at the old
Greenwich Observatory; for Spain at the observatory in
Madrid, and so on.

Another method, having a different set of troubles,
relies upon gravity. If gravity data were available for
the whole earth then it would be possible, according to
a theorem worked out by G.G. Stokes, to detefmine the
.gravitational potential at every point. The underlying
idea can perhaps be put in the following way. The in-
-tensity of gravity as it 1is measured at any point de-
pends essentlially on the integrated mass in a unit column
under the station. In its effect on the gravity meter,

a layer which 1s at a depth of several kilometersvhas no
less effect than one which 1s only a few meters down.

The reason is that while a Single gram would be much more
effective when nearby than when far away, yet in terms of
its contribution to the vertical component of gravity it
1s only the chunks which are within a reasonable angle
from the vertical that matter. The amount of any layer
which 1s within a cone of say 450 from the vertical will
be proportional to the square of the distance from the
station, and this increase in the amount of material
balances the decrease in the effectiveness per gram,

so that in a horizontally stratifiled earth the intensity
of gravity is a failr measure of the column integral of the
mass. As a consequence, it 1s possible in many cases to
formulate the application of Stokes' principle by imagining
the earth to consist of a shell with a surface distri-
bution of matter which is proportional to the intensity

of gravity at the point. The elaborate integrals which
appear in Stokes' equatlon are, in fact, not much more
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than the expression of this idea.

It will be seen at once that the effectiveness of
Stokes' theorem depends on a reasonably complete know-
ledge of the intensity of gravity over the earth. Any
gaps in our knowledge will inevitably falsify the potential,
not only as far as the absolute value of the slope 1s
concerned, but even the shépe of the geold. On the whole,
the dimensions of the form of the geoild from gravity are
usually found to be mofe accurate in local details but
less accurate in overall shape than the dimensiohs found
by astronomical leveling.

The end result, therefore, of the geodetic surveys
of the earth is a set of x, y, z coordinates in which we
have superposed the measured heights and measured hori-
zontal coordinates on a geold whose general shape was
found by the methods of astronomy and gravity. It is a
long detour to get a simple result, and many modern geo-
desists have suggested that this detour 1s not really
necessary. In particular, Brigadier Martin Hotine has
suggested that surveyors should regard their measured
angles in the same way that a photogrammetrist regards
the angles which he can obtain from a single photograph.
Hotine suggests that triangulation nets should be bullt
up by the step-wise accumulation of sets of angles, using
the same mathematics that are used in photogrammetry.
The comparison is very instructive but, in fact, 1t 1is
found that when Hotine's procedure is carried out, the
results are inferior to those produced by ordinary tech-
niques of calculation.

The reasons for the fallure of three dimensional geodesy
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are twofold. First, in an ordinary photogrammetric sur-
vey most of the angles are nearly vertical, which means
that the height of the aircraft is well determined. It
also means that the refraction of light along the lines
is relatively small. In the second place, the require-
ments for precision in photogrammetric surveys are much
less than the requirements in geodetic surveys. As a
consequence of these two facts, the photogrammetrist is
Justified in considering that any direction which he
measures is in error by a small solid angle whose trace
on the sphere is nearly circular. The geodesist, on the
other hand, considers that his angles are likely to have
errors in the vertical direction which are orders of
magnitude larger than those in the horizontal direction.
It is for this reason that the techniques of geodesy are
so entirely alien to those of photogrammetry.

On the other hand, it 1s a consequence of this thought
that when we observe targets which are very high above
the earth, such as satellites instead of the conventional
geodetic targets, which are lights around the horizon,
then the mathematical situation in geodesy becomes very
much like that in photogrammetry. Since the future is
likely to bring us more high targets to observe on, and
since the mathematics required to deal with these problems
is much simpler than that required in the usual geodetic
methods, 1t 1s likely that this whole fragile web of
thought which I hawve been describing for you 1s one whose
practical significance will become less every year.

It is still, however, the best way to obtaln precise
positions. Finally, its historic importance as the parent
of differential geometry and so of the theory of relatiGity
will give it a place in the hearts of mathematiclans for
, years to come. '
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Lectgre 2 The Physical Significance of the Flattening of
Lecilrllre 3 i Elle_ .E_a_r.t_ll

It was Newton who first pointed out that, as a con-
sequence of the rotation of the earth, it was necessary to
assume that the earth 1s flattened. He showed that, if
the earth were not flattened, then the seas in the equa-
torial regions would be more than six miles deep, and the
land would protrude in a corresponding way in polar re-
gions. Newton calculated, on the basis of the assumption
of a homogeneous earth, that the flattening f should be
about 1/230. A few years later, Domenique Cassini announced
that the remeasurement of the meridian on France from
Dunkirk south toward the Pyrenees indicated that the length
of a degree of latitude tended to increase as one went'
southward. If the earth were really flattened, then the
length of a degree of latitude should have decreased going Y
southward, as may be seen from Fig. 1. Y
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Fig. 1
Relation of Geocentric Latitude (¢')
to Geodetic Latitude (¢)
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It is to be remembered that latltudes and longitudes re-
present angles between the local vertical and the reference
planes respectively of the equator and the meridian of
Greenwich. If, on the other hand, they were geocentric
angles, then the length of a degree of latitude would be
greatest at the equator and least at the poles. The dis-
crepancy between Newton's prediction and Cassini's obser-
vations led to a bitter quarrel between the French and the
English mathematlcians. The English scientists of that
time were not quilte sure of their position, as is witnessed
by the fact that Newton chose to write in Latin, evidently
not quite sure that the English language was here to stay.
The quarrel has been caricatured by Swift in Gulliver's
Travels. In the end; the above-mentioned measurements
carried out by Maupertuis in Lapland (1736) and by Bouguer
and de la Condamine (1735) in Peru showed that, in fact,
Newton was right, énd the earth was flattened rather than
football-shaped.

From the latter part of the 18th century on, it be-
came clear that the measured value of the flattening of
the earth was 1inconsistent with the idea that the earth
is homogeneous. The values were much neérer to 1/300 than
to the value of 1/230 which would have been required if
the earth had been homogeneous.

In the early stages of the measurements, it was quite
enough to measure the flattening without specific reference
to the surface that was involved; later on, after the intro-
duction of the idea of the geold, it became clear that the
best surface to discuss was the sea level surface of the
earth. Once the idea had been introduced, it was possible
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to glve a rather precise meaning to the idea of the flat-
tening of the earth, and to calculate the expected value
on various assumptions about the interior.

A considerable number of particular hypotheses were
discussed:' the possibility that the earth was homogeneous,
the possibility that it consisted of a nucleus which con-
tained nearly all of the mass plus a sort of atmosphere,
and the possibility of various smooth distributions of den-
sity which would interpolate between these. A very im-
portant result was shown by Radau about 1880, namely,
that the predicted value of the flattening of the earth
depended on a moment of inertia around the polar axis,
and that all distributions of density having the same
moment of inertia would have almost the same flattening.
The error of thissassumptién is in the fourth significant
figure, provided that the density always decreases outward.
Thus the kernel of the problem of predicting the flattening
of the earth is the problem of the calculation of the
flattening of a body whose polar moment of inertia C is
given.

The theory of this calculation will be given below.
For the moment it is important to view this problem as it
was seen up to 1958. During that time, the problem of
determining the eartb's flattening was thought to be best
treated by thinking Qf three unknowns. These were the
polar moment of inertia C, the difference between C and
the axial moment of inertia A, i.e., the quantity C-A,
and the hydrostatic value of the flattening f. From hydro-
static theory, as mentioned, it was possible to find an
equation between C and f. From the theory of the luni-solar
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perturbations, it was possible to determine the quantity
(C-A)/C, to which the name the dynamical flattening was
given, and the symbol H. In addition, it was known'that
the quantity (C-A)/Ma® = Jé was equal to %(f-%m), where m
is the ratio of centrifugal force at the equator to gravity
at the equator. This relation is somewhat approximate,
since there are small higher-order terms of the order of

a fraction of a percent, but 1t is also purely mathematical,
and depends in no way on assumptions about hydrostatic
equilibrium. This equation related C-A to £, but it should
be noted that the f here is the real flattening of the
earth and not necessarily the one predicted by hydrostatic
theory. Before 1958, 1t was customary to make the assump-
tion that the real f equaled the hydrostatic f. One then
had three equations among the three unknowns, and the
solution was possible. In recent years, the determination
of J2 difectly from satellite orbits has furnished a new
equation in this problem. At the same time, the recog-
nition that the hydrostatic flattening is not necessarily
equal to the actual flattening means that we have a new
unknown, and so the system 1is now more complicated than
before; we have four equations with four unknowns. The
point which is not clear from the older discussions is that
the hydrostatic flattening of the earth depends only on
the assumed value of the polar moment of inertia. This

is directly determinable now, since we can measure

(C- AYMa and also (C-AYC; the quotient of these 1is evidently
C/Ma . From this, the hydrostatic flattening is directly
determinable., I repeat, formerly 1t was impossible to
obtain C/Ma2 with adequate accuracy unless one made the
auxiliary assumption that the hydrostatic and the actual
flattening were equal. Thus it is the older situation
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which is complicated and the newer one which is simple.

I shall now give the theory of the relation
between C/Maz and f, the flattening, as it would be
in a plastic or:liquid. body. I shall follow Jeffreys'
theory as stated in The Earth (Cambridge University Press,
1952 or 1958 edition). My excuse for giving you a long
commentary on sectlon 4,03 of his bogk, which covers only
8 pages, 1s that I have found these pages very difficult.
Since there are 2 errors on these pages which appear in the
1952 edition and were reprinted in the 1958 edition, 1t
is Just possible that I am not the only person who has
had trouble reading these pages. (Since 1958, both errors
have been spotted by others beside myself.)

My equations will be numbered in accordance with his;
those with letters followlng are interpolated.

The theory of the interior of the earth starts from
the assumption that the earth is in hydrostatic equilibrium.
That is to say that it 1s in equilibrium under the action
of forces which cause no motion and which produce pressures
acting equally in all directions, as in a fluid. Under
these circumstances, we will expect that the density will
be stratified in layers such that the surfaces of constant
density will also be surfaces of constant potential. The
result is intuitively obvious -- it means only that a
fluild seeks its level. If there were a place where the
density above an equipoténtial’ surface . exceéeded the den-
sity below it, then the heavier fluid above would tend to
displace the lighter fluid below the surface. The point
can be proved analytically, but it is one which 1s too
simple to be worth such a discussion.
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It 1s important to remember that the potential which
is involved here is not the true gravitational potential
of the body, but rather the geopotential. The difference
is the centrifugal forces which arise from the rotation of
the body. These forces are included in the geopotential,
on exactly the same footing as the true gravitational
force. Once agailn, this 1s a matter of ordinary experience;
the force which we call gravity in daily l1life 1s 99 percent
the real gravitational attraction of the earth, but the
remaining fraction 1s the force of the earth's rotation.
The difference 1is quite perceptible in ordinary life.
The flow of the Mississippl requires about one foot per
mile, which is a small fraction of the difference between
the geopotential and the earth's true gravitational po-
tential. The maximum inclination between surfaces of true
gravitational potential and geopotential is of the order
of 5 or 10 minutes of arc. |

We shall follow Jeffreys in this derivation and desig-
nate the density by the symbol [), and the geopotential
by the symbol 1!0 The surfaces of the constant Q’ will be
surfaces of constant /) . We consider a homogeneous,
nearly spherical body whose surface is given by the equatilon

r=a(l+ 21 €.5.), (2)
according to Jeffreys, where Sn is a surface harmonic,

a 1s the earth's mean radius, and €n is a small numerical
coefficient (Fig. 2). Notice that Jeffreys has written
this equation as a single summation over n; this 1is merely
a convenlence to avoid the ugliness of a double summation.
In fact, the Sn's must be considered as functions not only
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of the degree n of the harmonic but also of its order m.
Since we shall get rid of all these harmonics except 82
at an early stage in the game, it 1is not important to dis-
tinguishrbetween tesseral and zonal harmonics, and hence
m may be omitted.

We now consider the gravitational potential due to
this body. 1In calculating the potential, Jeffreys makes
the assumption that all of the € 's are so small that we
‘can neglect second order terms. Under these circumstances,
we can represent the attraction of the body as that of a
sphere combined with the attraction of an infinitely thin
surface distribution of matter painted on the outside of
the sphere. What is neglected here is the fact that a real
3-dimensional bulge would attract, not toward a point right
on the sphere, but toward a point half way up through the
bulge. The neglect of second order terms is fully justi-
fied for all harmonics except the second. In the case
of the second harmonic, quadratic terms have been calcu-
lated by Darwin. They represent an enormous increase in
the difficulty of the computation without any real increase
in the accuracy with which the computation represents
physical reality. The effects of lack of fluidity in
the earth are large enough so that the use of second order
terms is not justified even for the second harmonic.

For the potential outside the body, Jeffreys gives

o>

_ 4= 3/1 a
Uo = 3TEPa (5 + ) zmT Tarr €nSn) (3)

where f 1s the absolute constant of gravitation. This
equation may be derived from W.D. MacMillan, Theory of the




The Earth-Moon System. 22.

Potential, p. 395, Equation 1:
oo
+
Vv = ZO s ($5:6,) (2)™H.
m=

Here V 1s the potential m is Jeffreys' n; ¢0,6 are the
coordinates of the point at which the potential is being
evaluated; and Sm(¢0,90) is a surface harmonic, multiplied
by its coefficient, deflined by the following equation for
the surface density d: ‘

1 .
d =553 (2m+1)s_(9,6),
ra ggo m ¢,
where ¢,6 are the coordinates of any point. In this case,
the mass distribution corresponding to the mth harmonic
will be ’

2m+1
For Jeffreys, this surface distribution of mass is
produced by additional thickness of the homogeneous body.
It is thus

Cfn = [)a Ensn'

Equating cfn to cﬂn,

paE,s, * pL2 - 5.(4,0).

Substituting in MacMillan's equation for'V, and multi-
plying by f (which MacMillan takes equal to unity), we

obtain, for the nth term

n
as for Jeffreys. In (3), the first term is nothing but the
Newtonian attraction of a sphere. '
For the interlor attraction, Jeffreys gives the

following equation:
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SO
4 3 al_p° r’
U =3mTipa (3‘2—&"3‘“ + 2 sie oo ensn)' (4)

This equation 1s obtainable from MacMillan's equation,

o0
V= Zo S, (05,00 )" i r < a,
m=

with the same substitutions for Cf except for the first
term inside the parentheses. The first term represents
the potential at a point’in the interior of a sphere.

It consists of two contributions. The first is that due
to the portion of the sphere interior to the point in
question, which 1is clearly

3T,

where r 1is the radius from the center of the sphere to
the point in question. The potential due to the portion
of the sphere outside the point in question is given by
MacMillan (p. 38):

27§bf(a2-r2),

and the combined effect is

2 2
%TUDfa3 iﬁi_:E_l

2a3

3

which is the first term inside the parentheses of Jeffreys'
Equation 4. We now consider a heterogeﬂeous body. The
density 1s constant and equal to ;)' over a surface given
by Jeffreys' Equation 5:

rt =a'(1+) €.5.), (5)

where p' and €n are functions of a'. In order to keep
straight the varying meanings and kinds of radii which are
involved in this situation, let us look at Fig. 2. First
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we have a, which is the mean radius of the outer surface
of the body. It is thus approximately the semi-major
axis of the earth. Next we have a', which is the mean
radius of any interior surface. We can describe a point
of the equal density surface by giving r and Sn’ since Sn
will contain the angular variables. The mean radius of
that surface which passes through the interior point
P(r,0,0), where the potential 1s to be found, is defined
by Jeffreys as ry- '

To calculate the potential, Jeffreys proceeds to take
the difference between two homogeneous bodies, one having
the outer surface corresponding to the density ;), and the
other having a sgrface equal to

pl + Apl"

The external potential 1s therefore clearly given by
Equation 6:

_ b [B 3 '3 3 a3 '
o =3!f op'» Sartw t Zznﬂ ¥l €xSylda’. (6)

The quantity ‘)' is not differentiated because the gra-
vitational attraction of the thin spherical shell 1is
proportional to the difference in radius da' between its
two sides, but 1is proportional to lj‘ itself and not to
d/)'. The integration is extended over a' up to a rather
than to oo, clearly because beyond a there is no density.

For an internal point, we calculate the potential U1
in two parts. The first term 1s due to the matter which
is interior to the point under consideration. For this,
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an explanation exactly like Equation 6 applies, except that
the integral extends only up to the mean radius ry through
the point in question. For matter external to the point,
we differentiate and integrate Equation 4 in an entirely
Similar way:

b (1 o (a3 3 a3
Uy =3/ fjo P55 + Lz APl €nSy)da’
4 (2 3 13..2 3
* ?"ffr p'aa'('éa + Z2n+1 -2 €nSy |da’. (7)
1

Note that in these differentiations and integrations,
the only variable is a'; r is the radius to the point. P
at which the potential 1s being evaluated; Ty is the mean
value of r on the equipotential through P, i.e.,

r = rl(l + Z ensn)"

To obtaln Q’, the geopotential, we must add the con-
tribution from the centrifugal force. Thus

\@ =U +»%w2recosg¢' =U + %mzre + %w2r2(%-- sin2¢'). (8)
Let us note that, after Equation 8, Jeffreys mentions
that he can ignore the difference between § and ¢'. The
next sentence, which discusses the behavior of ;) and
over the equipotential surfaces, contains the word "then",
which appears to refer back to the remark about ¢ and §'.
I have been unable to make sense out of this relation,
and I believe that the sentence about ¢ and §' is simply
misplaced. In fact, Jeffreys continues to use ¢' until
after his Equation 12. The Jjustification for ignoring
the difference is the fact that trigonometric functions of
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0! occur only with the small coefficient (2 or one of the
epsilons.

Jeffreys proceeds to point out that, in his Equations
7 and 8, Q) can be a function only of ry. This 1s because
the value of ry is constant over an equipotential éurface.
In particular, q) cannot be a function of the S 's, which
are functions of the coordinates @ ,l Jeffreys next
defines [), the mean density in the body, by means of his
" Equation 9, namely

a
= 472’]0 p‘a'zda' = %ﬂ‘a3§. (9)

He then defines the mean density [)O within a surface whose
mean radius is ry by Equation 10, namely

r
- _13.f ! prarZaar. (10)
rl 0

Jeffreys then proceeds to substitute for 1/r in his Equa-
tions 7 and 8. It is important to notice that r has small
coefficients except in the first term. In this term,
therefore, we must retaln first order of small quantities.
1 We notice also that r
can be taken out from under the integral sign and from the
differentiation, since both of these refer to the running -
variable a' rather than to the point at which the potential
is being evaluated. |

Elsewhere we can replace r by r

The quantities en and ;y are to be regarded as
functions of a'. -In obtaining Equation 11, namely
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| 2 -2€.5, (T1 1 jrl
J(f f 3PD'a’ %ga +Zgn+1 n{ n+lJ p'd(a'n+3€n)

1 !

o)

GV Ry

€
-2

LR 2, Ly, 21 20l
+ §m r < + 2w ry (3 sin“@')| = function of r, only,

Jeffreys has twice preferred to replace expressions of the
form a€ a' by df. The function of r to which (11) is

equated is

- M @--*u ‘[ Lfd(

Since the left hand side of Equation 11 must be constant
for a given rl, the coefficients of all of the Sn's,

where n is greater than or equal to 1, must vanish because
the Sn's contain the angle Variables. If thelr coefficients
did not vanish, then the left hand side of the equation
would depend on the angle variables. Moreover, because

of the orthogonality properties of the Sn's, no combination
of the Sn's could have the same effect as one of them.
Hence, 1t 1is not possible to arrange the coefficients in
such a way that the variation of one Sn is covered up by
the others. The only way to make the whole left hand side
of (11) independent of the angle variables is to make the
coefficlent of each S equal to zero. When we do so, we
get Equation 12 after dividing through by IVIEE

€n (M1 2 1 1 1 n+3€
PR L4 Ia da + d
r f ,0 ' ! an+l n+l J’ p' (a! n)
1J 0 Ty 0

+ 1) f p’d(a‘n 2)} - 0, (12)
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except in the case when S_ 1is (%-— sinQQ), when we get
an extra term,

'213“21'12/ T,

on the right hand side. The right side is therefore written

(o, - éwzrlz/‘ﬂ’f).

We next multiply (12) through by r Nl and replace r, by r:
1 1

r

pontl . - 0.
fap d(a‘n 2) 0 (12a)

We now consider the variation of the potential with
distance from the center of the earth, so that we regard
r as a variable. In differentiating the integrals, it is
important to remember that the 1ntegra1 for a general
function f(a') is

ag——,-f:f(la')da' = ().

With this in mind, Equation 12a is differentiated as follows:
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de r
{ nr €, -r dr}’[opw-da €npr

4
+ 21}1+1 {_P (n43)r™* 2 €+ 3 p B

a € d €
+ (2n+l)r2nf pld( nlj2) - pentl n. 1
ry a'

2 4

- ,DEn : (—n+2);%:-f = -%T—r-?.

In writing this equation, we must keep in mind that ﬁ)

1s the value of [)' when r = a. This equation simplifies
Jeffreys' Equation 13 when we combine the two terms in
the second bracket which depend on dEfn/dr, and note that
the sum of three terms in En/Drn+2 is zero.

Making these substitutions, we arrive at Jeffreys'
Equation 13, which includes both integrals and derivatives:

a€ r a
n n-1 2 2n d
I + nr €n)fo pial da' + r frpta;

(o, - %%r;) - (13)

We now divide by r2n and get Equation 13a:

1l d€ r a €
1= n n 2 d n _
(rn 5t T €n) foplai da' +' fr ,D'—da' (a,'n'g)da' =

( 0, - 8%&)'21“) (13a)

We differentiate with respect to r and note, as before,

-("

€n
a,n—EJda' =
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the effect of varlable limits of integration. We further
note that p 1s the value of p' at a' = r. This gives
Equation 13b:

2
_ n 9€n +_ld €n _n(n+1) n 4€, >
n+l dr n 2 n+2 €n+-———-—— frp'a' da'
r r 0

r dr rn+1 dr

d€ ag
1 .1 (-n+2)
‘(‘H = * n+1L )Pr - ,0[ e - + € rﬁ—l ] =

r

(13b)
In constructing this equation, we did not differentiate
under the integral sign in the last term because all quan-
titles there are regarded as functions of a'. We multiply
through by -r", and this gives (13c),

a%€ d€, n€
(dra"‘-“‘“ﬂ’ )j pa’ da'+(dr )pr

+ p[ra ddfrn - r€n(n-2)] = 0, (13c)

which simplifies into Jeffreys' Equation 14:
2
d“ € € €
n n(n+l) { n 2 _
(dr2 - n)]pa'da'+2\dr r)pr = 0.

Now, from Equation 10, it is easy to see that

r 2 1.3
[ prerar - 13,

Substituting for the integral and dividing through by r3/3,
we have Jeffreys' Equation 15, which 1s the famous equation
of Clairaut:

2
afie - seme) copffa. f)o oo
r

r
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The equation of Clairaut was obtained in 1743. 1In
the intervening two centuries, a great deal has been found
out about the possible solutions of this equation subject
to the restriction that the density decreases steadlly
downward. There are two reasons to think that this will
happen: First, the denser materials would tend to sink
in fluid equilibrium; secbnd; materials which are at a
lower level are under high pressure and, therefore, will
be somewhat compressed. It follows that the mean density
[DO within a given surface will also be greater than the
local density [); except at the center where ﬁ%-ﬁ)——e Zero.

We suppose that for small values of r, €‘n varles like
rp. Then, substituting in Clairaut's equation, we have

[Jo[é(p-l)rpqz - Eligller + éﬁl(prp-l +-£§J = 0. (15a)

Dividing by P2 and also by P which equals ﬁ% at the
center of the earth, we have a quadratic equation in p:

p(p-1) - n(n+l) + 6p + 6 = O, (16)

This equation is solved by the usual processes, glving
elither

p = n-2 or p = -n-3. (17)
Of the two solutions, we can discard p = -n-3, since in
this case the solution would be proportional to r "2

. n°’
As n goes from +1 toe©, the exponent on r would be nega-
tive. Such a solution would go to oo at the center of the

earth, and is therefore impossible. If, therefore, for
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p = n-2, we take n = 1, then

-1

dE}l k
dr = T2
r
d2€.n 2k
dr ;3 ’

Substituting, we find that, for this case, Clairaut's
Equation 15 holds identically for arbitrary density func-
tions p and pO’ The radlal displacement is proportional
to Sl regardless of the distance from the center, and
this, in turn, implies a rigid body displacement which
needs not be further considered.

If n = 2, then En is neither infinite nor zero near
the center. For this border line case, a special treat-
ment 1s needed because n-2 vanishes, and hence the previous
treatment leads to constant ellipticity. We let

1 - -f%g = Hrk

hold for small r. In this equation, H must be positive

so that the density may increase as r increases, and k
must be positive to avold an infinite value of the density
at the center. We further suppose

€2 = A + Brs. (18)

We substitute in Equation 15, and find (18a):
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s-2  6(A+Br") 6 s-1 ., A+Br°| _
Do Bs(s-1)r - 2 + —%(Bsr +==—]=0

(18a)
In this equation, we note that

6
%(p_po) = - A’Eoo(l - —.0—) = -GAPOHrk‘zo (18b)
r r

0

We also can transform the terms whose coefficient is 6/DB:

LDO - P (1 - —55)] (6Bs + 6B)rS ™2

(6Bs + 6B)r>~2 - D Hr"®-2(6Bs + 6B).
0 - 0
(18¢c)

1

P (6Bs + 6B)1:*s'-2

The second term in (18c) disappears because it 1s of an
order higher than r° 2. The remaining terms of (18a)
are all multiplied by ﬁ%, so that we find

Bs(s+5)rs-2 - 6AHF"2 = 0. (19)

Equation 19 can only be true if s = k. In this case;
(19a) will hold:

Bk (k+5) = 6AH. (19a)

Since k 1s positive, B must have the sign of AH. H,
however, is positive, so that B has the sign of A. There-
fore, €2 must increase numerically with r.

Finally, if n is greater than 2, then €  behaves
like r™ 2 for a small r. We thus say that €, lncreases
numerically with r in all non-trivial cases for points near

the center of the earth.
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If the €n's should not continue to increase all the
way to the surface, then we would come to a place where

dEn _
dr

0.

Then the following would hold (Jeffreys' Equation 20):

d2€n 6 €n
—" - {n(n+l) - 7%}? (20)

Since n(n+l) is positive and is at least 6, it follows
that the right hand side of (20) is at least 6(1 - P/ Py),
which is positive, since () is always less than ;30.

Hence, the first derivative of epsilon will have the sign
of Gh and, therefore, Grlwould immediately increase
again in absolute value.

Our next step is to show that the €nfs should be
zero except for n = 1 and n = 2. In Equation 12, if we
put r, = a, then the integral from ry to a vanishes. We
also substitute from Equation 9 for

1

j: patfaar = 375, (202)

and Equation 12 becomes

a
_e - la?—— + i 1 f 'd(a'n+3E ) —
na 3 [) en+1 an+1 ()/) n

(0, - %;u?az/ﬁ’f). (21)

We denote the integral in Equation 21 by I. We assume
that €, 1s positive; then, integrating by parts, we get

I=FPa €naan+3 - ja a 103 €.4p"- (22)

a'=0
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Here the subscript "a" indicates values taken at the sur-
face. Since ;)' is a decreasing function of a', it follows
that dﬁ)' is negative; the integral in Equation 22 is
therefore negative:

I > pa Enaan+3. (23)

On the other hand, slnce E}ljs a poslitive, increasing
function of a', it is always less than the boundary value
Ena unless n = 1. Here Jeffreys says that €n does not
change. Actually, it has been pointed out to me that it
must increase without limlt near the center, but this

case 1s trivial.

—fa a'n+3€ndp'< - €2 * a'n+3dﬁ' (23a)

a'=0 a'=0
Substituting (23a) in (22), we have

I < Eha(/)aan+3 - Jﬁa a'n+3d;)'). (23b)

a'=0

The right hand side of (23b) represents the result of in-
tegrating by parts the expression

a

€a D' da nt3

a'=0

We replace ' by ZT + (lj'—ZT):
€raf -, praa™ = €l w [T (prprea™].

a'=0
(23c)
To evaluate the integral, let
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d(a™¥3) = (n+3)a ™ 24ar = e a3, (23d)
Therefore,
a 1 t 3 a 1A 1 13
€na/a.=op da M3 _ ena[ﬁnﬁ + Q“Bﬁfa':d(p 'D)a N4a ]
(24)

For n = 0, the last integral vanishes because the differen-
tial da'3 weights the integral in proportion to the volume.
In this case, the integral of [)hji must vanish by the
definition of mean density.

In general, because of the fact that ZT is a volume
average of [)', it will be true that the integral of
(p'-b') multiplied by any constant and taken from O to a
will be O. In particular, if we choose a, for the level
where ﬁ)' = 7, then, since ﬁ)' 1s a decreasing function
([)'-Zf) >> 0 under this level, i.e., for a'< ay, and
(D'-E) > 0 above this level. Then the product

(p-Pa™ - a)

will be negative for any power of n greater than 0, since,
for all such powers, the power of the greater number is
greater. Hence, '

a _ a .
/a'=o(p'-p)alnda|3 —- j’a|=o( p,_p)(a,n _ aon)da'3< 0.

Therefore, the integral in (24) is negative. Since
the remaining term 1s necessarily positive, the integral
can only decrease the whole expression, so that

1< €nazyan+3'
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Using (23), we see that the quantity I can, in fact,
be bracketed between the Ilimits

e1’].3. Daan+3 <IZ Enab—an+3'

All the above assumes that € is positive. If it is
negative, the inequalities are reversed, and hence;
whether € 1is positive or negative,

_ —==_n+3
I = e€napa =

where 0 < ©6<{ 1. Going back to (21), therefore,

2 2
2={ 1 e W a
Cna? P (’?’ * 2n+1) = (O’ - B'“ﬂ*‘fj" (25)

If the right hand side 1is O, this equation cannot be
satisfied for n :> 1, since, in that case, the-parenthesis
on the left must be less than 0. Its coefficient is com-
posed of quantities which also cannot vanish except at
the center of the earth. Hence, for all n except n = 2,
the €n must be O (to the first order) throughout the
earth. No harmonics except the second degree zonal har-
monics will exist.

With respect to the second degree zonal harmonic,
for which the right hand side 1s negative, the value of
ena must be positive. This, however, implies that E:na
is positive everywhere, since we have found that the ercs
must Increase steadily from the center. Jeffreys summarizes

these results as follows:

"On the hydrostatic theory the radius of a surface of
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constant density contains no harmonics other than that

representing the ellipticity; the ellipticities increase
all the way from the centre to the surface, and the sur-

face is oblate."

Returning to Clairaut's Equation 15, for n = 2, we
set ' '

€, =€ =rA. (26)
Its derivatives are:

d€ 3rel+r3d)t

6r), + 6r‘d l ——'lé-

dr

[e))
o7 MV
"S“Jm

Substituting these in Clairaut's Equation 15,

DO(6rA + 6r2% + r3g‘—2-A-'-2- - 6rd)

dr
+ 8232 ) + r3d)‘ +12)) = o.

Dividing through by p0r3 s We get

2 6 6

CALE A ﬁ“ﬂ%i—-"’

i.e.,

2) A /\

d—d;§ + 6(—56 )i ddI‘ 5 r = 0. (27)

We note that for small r, € behaves like rP, where
p = n-2. For n = 2, this means that € behaves like a
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constant and hence, from (26), ‘A,must behave like r_3.
It follows that ,l initially decreases. It cannot after-
wards increase, since at the minimum,

aA
~ar = 9

and we would also have

2
A 2up 1
'“‘_2'-"‘ 3
dr L%rz

and thus the second derivative would necessarily have the
opposite sign from‘l . But A. is positive. Hence,

QA.

dr

would necessarily be negative, and thus )~ must decrease
all the way from the center to the surface. ‘

In (13), we put n = 2; then S, = %:- sin®Q'. We
consider conditions at the surface where r = a; then the
second term disappears because of the coincidence of the
limits of integration, and the integral in the first term

is;, from Equation 9, replaced by %25&3. Then
2 U
1—_3|_2[a€ _ bWwa
pa [ ( )I,:a + 2a 6&] = -igﬂ,—f. (28)

To the first order, we can say that

2.3 (JE
—
HE

" Iq
3

D
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i.e., very roughly, the centrifugal force at the equator
divided by the intensity of gravity, and then the right
hand side of (28) becomes

gmauﬁ.
We multiply through by -3/a3p » and get

a(if_)a +2€, =5n. (30)

dr

It turns out that, at this point, it is advantageous
to introduce a new dependent variable TI > Which is defined by

7.l_dlog€_.

r 4a€
~dilogr ——e_—&?' (31)

The derivatives of € are

T 7l€ (1% _zz__u_) (32)

When these are substituted in Equation 15, we get
2
1l d - 6 1) _
€(;—%+41T7L-? +6I[)€(-2%+;)—0. (32a)
We multiply this through by r2/€ Po» and obtain

. d 2 o 6D _ .
an . g 7(_6+(7l+1)£0— 0 - (33)

In order to eliminate p in Equation 33, we start from
Equation 10:

- 5f pra




The Earth-Moon System. 41.

which, on differentiation; ylelds

3 Por) = pr°
and
d
1d 1 0. .3 2 2
S&Pe) =32 = pt = prt (s30)
'Dividing by por , we find
Po, . —Q— (34)
Ely
When this is substituted in (33), we get
r S+ 7° 57 + £ po(lm) = o. (35)

Now it turns out that the expression /90r5 . V1+7z
is of great importance in this theory. We shall transform
the equation so as to put it in these terms. Our first
step 1is to differentiate this expression logarithmically,
which gives

& {Por“ vitn 15= 1 dpo 1 ay (36)
DOPW Do | 2(1+7U dr-

In terms of this logarithmic derivative, we evaluate d7]/dr
and get

an =2(1+72) a gffir 1“?71 % 10(%’+T) )

- 758 . 2(1+72) /OO.I (36a)
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When this 1s substituted in (35),

{'Do Vit } 2r(1+7) 9Po
Porf‘w/" - 10(147] ) - p; =

2r(1+72 ) dr

+TI + 57 +2r po(1+7z)-o | (36b)

When this equation is simplified, it gives

%%L“;S—r {Dor%n} -0+ -3 - N (60)
or l _ _l_ 2 4
If we set

in - L1p°2
\V(n)=l+*$i/ﬁ_7ll° , (39)
then
& { Or5\/1+7l} s 5p0r4\}/(7l). (38)

Jeffreys notes that this equation is due to Radau (1885).
The point of introducing W is that it is effectively a
constant within the earth. By logarithmic differentiation,
we can obtain from Vf the expression

I'\)

LaV 5 -3m 11
d - - o Sm—
¥ dan 1+in -LnZ 2T
-1 1 N - 37) (40)

(L+aN -0 +M)



The Earth-Moon System. 43,

Note that Jeffreys botched here, writing 10 instead of
1/10 for the coefficient of 712 in the second parenthesis
of the denominator. (He mentioned this in a letter to me
about a year ago. Let us hope that I don't make any
worse botches!)

Clearly, .q[has a maximum or minimum at 72 0 and
at 7 = 1/3. Near V= 0, the logarithmic derivative of'q/
is increasing with Tl, since the numerator is nearly n
and the denominator is nearly 1. Hence, at this point,
we have a minimum of V. At W = 1/3, on the other hand,
we must have a minimum, since this point is a simple
0 of\V , and since there is no discontinuity of the func-
tion or its derivative in this period. N.B. The roots of
1 +Vn/? - n /10 are at 7? = 2.5 + 13.87/2. Both roots
are complex.

If we return for a moment to the quantity € , we find
that, since €/r3 is a decreasing function, its logarithmic
derivative -l-gg% —'% will be less than O. Therefore,

N > 3. If we actually substltute the values at the
surface of the earth, namely M = 1/288 and € = 1/298.2,
we find that 7], = 0.58. Values of 7| are then as in the
following table due to Jeffreys, with slight modifications:

Y
V(1)

0 ' 1/3 0.58 3
1.00000 1.00074 0.99961 0.8 .

Note that Jeffreys has 0.99928 for 'n = 0.57; this is
another botch, which someone had already told him about

in 1960. For r = O, T]'= O. We see that V. 1s very nearly
constant. Its maximum value exceeds unity by less than
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1 part in 1,000 and, at the surface, it is sunk below
unity by less than 1 part in 1,000. We have not entirely
excluded the possibility that J] may make a wide excursion
beyond the values that it reaches at the center and the
surface of the earth. This is, however, very improbable
and, unless this happens, we can say to an accuracy of
about 1 part in 1,000 that

& {pom} = 5por4’ (42)

which is clearly an enormous simplification of Equation
37. Now we would like to express these results in terms of

the moment of inertia. For a homogeneous sphere, the moment
2y 2

of inertia 1s known to be BMa , Or
8 _ .5
BR2

Differentiating, the moment of inertia of a thin spherical
shell is

8.4

-§;,pr Ar,

and that for a non-homogeneous sphere is therefore
8f-fa n

C = =77 rdr. (43)
30 P

To bring this in terms of F% and its derivative, we first
note that the derivative of [70 in (33a) 1is

ap r 3P
o _ -4 2 3 2 _ 0,3
3 = -9r fopa, da' + Bpr = % + —I‘Q—'

Then, multiplying by r5, we find
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ap
50 _ 4 4

r—= = -3r po+3rﬂ.

We can now replace ,O by saying

a d
%Tf prdr: Nf 3r pdr—97f0(3r4p0+r5 ﬁ,o dr,
which follows Jeffreys' Equation 43. (43a)

We now integrate the second term of (43a) by parts:

5 5 a a 4 5_ a 4
f —-dr=r poo-5for podr=ap-5for,00dr.
(43p)
We combine the second term of (43b) with the first term in
the bracket of (43a) to get Jeffreys' Equation 44:

_8._1=.5 & 4
C = 35T {pa - efor Dodr} : (44)
But, integrating (42), we have (45):

&~ 4 l— 5T
fopor dr = E;D a 1+7Ia' (45)
And when (45) is substituted into (44), we get (46):

8, .—.5 N
¢ =g5Tpa { -5 +na}’ (46)
or; in terms of the mass,

c__2=2 _ &
ez & - 8L -

In view of (30), the Equation 31 can be rewritten in the
form

Na =2% - 2 (50)
a

When (50) is substituted into (47), we get Kaula's equation,

which shows a direct relation bei:ween the moment of inertia
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of the earth and the hydrostatic value of the flattening:

Numerical evaluation of Kaula's equation, or the equi-
valent pair of equations from Jeffreys, yields‘approxi-
mately 1/300 for the hydrostatic value of the flattening
of the earth. If account 1s taken of some second order
corrections whose theory has been discussed by Sir George
Darwin, and which are summarized in the chapter by Spencer
Jones in Volume 2 of Kuiper's series on The Solar System,
it is found that the hydrosfatic value of the flattening
is near 1/299.8.

It is worthwhile to insist on the subtleties which
are involved here, because they mean that the hydrostatic
flattening is .less than the actual flattening. The value
which has previously been spoken of as the hydrostatic
flattening, namely, 1/297.3, is greater than the actual
flattening. If it were really true that the hydrostatic
flattening were greater than the actual flattening, it
would be very difficult to furnish an explanatibn° In
the actual case when it is less;, there is an equally
embarrassing superfluity of explanations. Concelvably,
the difference is due to the melting of the polar ice
caps and some lag in the restoration of isostasy especially,
perhaps, in Antarctica. Agaln, it is conceivable that the
dlscrepancy 1s a consequence, in some way, of the fact
that the polar caps are colder than the equator. It
turns out that the temperature difference continues to
exist for a surprisingly great distance into the earth.
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Since we are dealing with quantities of the order of 1
part in 100,000, it is clear that even a very moderatef
temperature difference may seriously affect the earth's
flattening. Again, because of the fact that the laws of
heat transport by conduction are irreconcileable with the
kind of thermal stratification which is implied by the
theory of hydrostatic equilibrium, there will be some
necessary distortions of hydrostatic equilibrium in a ro-
tating body, as was first pointed out by vonZeipel.
Finally, and in my opinion most plausible, there is the
explanation of GoKolMacDonald (personal communication,
1960) to the effect that the excess bulge'around the equa-
tor is the resultant of a retardation in the earth's
rotation over the past millions of years. I do not think
that any of these explanations can be excluded in a satis-
factory way, with the possible exception of the melting

of the polar ice caps. Kaula has made some computations
along this line which indicate that it is numerically ina-
dequate. I am inclined to think that the most plausible
explanation, if we must choose one, is the retardation of
the earth's rotation, for which there exists independent
evidence.

In any case; it 1s important to notice that the
flattening is a direct function of the polar moment of
inertia. If we are giveh another functional relationship
between these two quantities;, such as that provided by
the luni-solar precession which yields the quantity
(C-AYC, then we are able to solve for the hydrostatic
flattening. The solution does not depend in any way on
what the actual value of the flattening is. If we know C
within 1 part in 10,000, then we can calculate the value
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of the hydrostatic flattening to approximately the same
accuracy. On the other hand, an error of 1 part in 10,000
in the actual value of C would upset the observed value of
the flattening by the totally unacceptable amount of 10
units in the reciprocal of the flattening. Thus, the
presently observed values of the actual flattening are
better than are needed to make a satisfactory calculation
of the hydrostatic flattening.




